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Abstract—The requirement of uncertainty quantification for
anomaly detection systems has become increasingly important. In
this context, effectively controlling Type I error rates (α) without
compromising the statistical power (1− β) of these systems can
build trust and reduce costs related to false discoveries. The
field of conformal anomaly detection emerges as a promising
approach for providing respective statistical guarantees by model
calibration. However, the dependency on calibration data poses
practical limitations — especially within low-data regimes.
In this work, we formally define and evaluate leave-one-out-,
bootstrap-, and cross-conformal methods for anomaly detection,
incrementing on methods from the field of conformal predic-
tion. Looking beyond the classical inductive conformal anomaly
detection, we demonstrate that derived methods for calculating
resampling-conformal p-values strike a practical compromise
between statistical efficiency (full-conformal) and computational
efficiency (split-conformal) as they make more efficient use of
available data. We validate derived methods and quantify their
improvements for a range of one-class classifiers and datasets.

Index Terms—Conformal Inference, Anomaly Detection,
Uncertainty Quantification, False Discovery Rate

I. INTRODUCTION

The field of anomaly detection comprises methods for

identifying observations that either deviate from the majority

of observations or do otherwise not conform to an expected

state of normality. Domains of application comprise cyber se-
curity [1], fraud detection [2], predictive maintenance [3], [4]

and healthcare [5] — emphasizing the relevancy of anomaly

detection systems in mission-critical industry applications.

This work focuses on the unsupervised approach of

one-class classification. This approach is particularly suitable

when a representative set of anomalous observations is un-

available, as expected in most anomaly detection settings.

A major limitation that one-class classifiers share is the lack of

statistical guarantees regarding their estimates. Therefore, an

estimator’s uncertainty is by default unquantified, undermining

its reliability and trustworthiness. Furthermore, the general

lack of non-parametric models, often subject to a priori as-

sumptions, and the abundance of parameter-laden algorithms
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funded by the German Federal Ministry for Economic Affairs and Climate
Action (BMWK).

— both prone to misspecification and overfitting [6] — often

result in subpar anomaly estimates and thresholds.

Conformal anomaly detection (CAD) [7], [8] seeks to

address these problems by leveraging the non-parametric and

model-agnostic framework of conformal prediction [9]–[11] to

provide a principled way to uncertainty quantification.

CAD computes valid p-values from arbitrary anomaly scores

as obtained from any given one-class classifier. Respective

p-values enable statistical hypothesis testing to determine

whether an observation is an inlier [12] while controlling the

(batch-wise) marginal False Discovery Rate (FDR).

Problem 1. Let D be a set of observations (inliers)
sampled from an arbitrary distribution P . Given a new
batch of observations B = {x1, . . . , xn}, we aim to
test the null hypothesis H0,i for each xi ∈ B as
H0,i : xi is drawn from P (i.e., is an inlier). The objective is
to determine which observations in B can be considered
outliers while controlling the FDR for the batch at a specified
nominal level α.

The standard conformal procedure, splits available (non-
anomalous) training data D into a proper training set Dtrain

and a calibration set Dcalib. After fitting a scoring function

ŝ with an algorithm A on Dtrain, respective anomaly scores

(conformity scores) ŝ(Dcalib) are calculated. The p-values of

unseen observations are computed as the relative rank of

the obtained score among the scores as calculated for the

calibration set, cf. [13]. Resulting statistical guarantees hold

when inliers in training and test data are exchangeable — a

term related to but weaker than the assumption of IID, as it

only requires invariance to permutation without independence.

Contributions. Within the given context, the contributions

of this work may be summarized as follows:

• We formally define leave-one-out-, bootstrap- and cross-

conformal methods for anomaly detection. Respective

(resampling-)conformal methods make more efficient use

of available training data than the classical inductive
(split-conformal) approach while yielding larger calibra-

tion sets — impacting the range of possible p-values to be

obtained. We discuss respective theoretical foundations,

guarantees, and implications.
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• We empirically evaluate the marginal FDR and statistical

power of derived methods to the split-conformal proce-

dure for Isolation Forest [14], Local Outlier Factor [15]

and Principal Component Analysis [16] on ten benchmark

datasets (see [17]) after the adjustment of obtained p-

values by the Benjamini-Hochberg procedure [18].

Fig. 1. Non-exhaustive taxonomy of the field of conformal inference with
conformal prediction, conformal anomaly detection, and the derived family
of resampling-conformal methods for anomaly detection.

II. RELATED WORK

Beyond the seminal works regarding conformal inference

[9]–[11], [19], the term conformal anomaly detection was first

introduced in [7].

In [7], [8] CAD was initially applied for detecting anoma-

lous trajectories in maritime surveillance applications. The

works formalized and discussed the principles of conformal

prediction applied to an anomaly detection task. As part of

[8], conformal anomaly detection1 and inductive conformal
anomaly detection were defined.

The work of [12] further advanced the field of CAD by

demonstrating that conformal p-values are positive regression
dependent on a subset (PRDS) [21] and do not break FDR

control via the Benjamini-Hochberg procedure. The respective

work also proposed to explore potentially more powerful

variations, beyond the inductive approach.

In the context of conformal prediction, the inductive ap-

proach was initially extended by cross-conformal methods as

a “hybrid of the methods of inductive conformal prediction

1In [8] the term conformal anomaly detection refers to transductive confor-
mal prediction [20], otherwise known as full-conformal prediction (compare
Figure I). Full conformity is an important theoretical concept in conformal
inference and the most statistically efficient approach. It does not require a
dedicated calibration set but the fitting of models during inference, deeming
it impractical for most real-world applications.

and cross-validation” [22], primarily to make more efficient

use of available data, inducing a higher degree of stability into

the calibration procedure. With that, this work mainly builds

upon the general idea of “cross-conformal predictors” [22]

and several extensions of the underlying concept — namely

Jackknife [23], [24], Jackknife+, CV, CV+ [22], [25] and

Jackknife+-after-Bootstrap [26].
The concept behind leave-one-out- and cross-conformal

methods for anomaly detection was first formally applied by

[13] for the computation of integrative p-values. In this work,

one-class classifiers were separately trained on both, available

inliers and outliers to leverage information of both classes

to integrate independently obtained p-values into a single

scalar statistic. In this context, transductive cross-validation+
(TVC+), based on CV+ [25], was proposed. Specifically, the

fundamental transductive (full-conformal) approach, due to

its theoretical advantages over e.g. the inductive or cross-
conformal approach, was applied.

Other works relying on the application of conformal

anomaly detection and related conformal concepts are [27]–

[29] complemented by [30]–[32], dedicated to the online

setting.

The works of [33]–[36] used (cross-)conformal predictors for

anomaly detection using a forecasting approach.
None of these works explicitly and formally defined, re-

ferred to, or empirically evaluated leave-one-out-, bootstrap-,
or cross-conformal anomaly detectors.

III. BACKGROUND

Consider a set of data D comprising n observations Xi ∈ Rd

in a d-dimensional feature space for i ∈ [n] = {1, 2, ...n} that

were sampled from an unknown continuous, discrete, or mixed

distribution PX . The goal is to answer the null hypothesis H0

of whether a new observation Xn+1 was drawn from PX under

the assumption of exchangability, i.e. can be considered to be

an inlier.

Definition III.1. A sequence X1, X2, ...Xn is subject to

exchangability, when for any finite permutation σ of the

indices 1, 2, ..., n the joint probability distribution of a per-

muted sequence Xσ(1), Xσ(2), ..., Xσ(n) is identical to the joint

probability distribution of the original sequence.

We aim to compute marginal and superuniform (conserva-
tive) p-values û(Xn+1) under H0 for all α ∈ (0, 1) with

PH0
[û(Xn+1) ≤ α] ≤ α. (1)

Resulting p-values are considered to be marginally valid as

they depend on a subset Dcalib ⊆ D for calibration and Xn+1,

both considered to be random in 1. With that, marginal
p-values are only valid on average yet allow for the reliable

control of the marginal FDR [12].

Inductive Conformal Anomaly Detection. Given D con-

taining only inliers, the split-conformal (also inductive) ap-

proach splits D into two disjoint subsets Dtrain and Dcalib.
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Data as part of the proper training set Dtrain is utilized to

fit a one-class classifier to learn a function ŝ(X) suitable

to compute an anomaly score (or conformity score). In this

work, small values of ŝ(Xn+1) are indicative of Xn+1 being

a potential outlier. However, given formulas may be adjusted

to suffice the case of increasing scores.

Following the principles of conformal inference the score

ŝ(Xn+1) of a new observation gets compared to the empirical

distribution of ŝ(Xi) as computed for the calibration data

Dcalib, indexed by i ∈ Dcalib. With that, conformal p-values

are computed as the normalized rank of ŝ(Xn+1) in ŝ(Xi)
[13]. For any given Xn+1 ∈ Rb the corresponding marginal

conformal p-value is defined as

û(Xn+1) =
|{i ∈ Dcalib : ŝ(Xi) ≤ ŝ(Xn+1)}|

n
(2)

Given the intention to control the FDR of obtained anomaly

estimates, a conservative correction by the function

p(x) =
nx+ 1

n+ 1
(3)

must be applied to ensure super-uniformity2 of obtained p-

values, although decreasing their statistical power (especially

for smaller calibration sets [12], [13]).

Definition III.2 (Super-Uniformity). A random value X
within [0, 1] is said to be super-uniform if [its cumulative
distribution function (CDF) is given by] PH0(X ≤ t) ≤ t
for all t ∈ [0, 1]. This implies that X is super-uniformly

distributed.

Under the assumption of exchangability the computed con-

formal p-value û(Xn+1) is valid for testing given H0.

Proposition III.3 (e.g. from [12]). If the inliers in Dcalib

are exchangable with themselves and with Xn+1, then
PH0

[û(Xn+1) ≤ α] ≤ α. for all α ∈ (0, 1).

Besides the marginal validity of computed p-values, also the

range of possible p-values to be obtained depends on Dcalib

with the lower bound limited by 1/|Dcalib|+1. This poses critical

limitations (especially in low-data regimes) as p-values might

not sufficiently reflect a model certainty, resulting in overly

conservative yet occasionally anti-conservative p-values [12].

The stated limitations, motivate the formal definition and

empirical evaluation of leave-one-out-, bootstrap-, and cross-
conformal anomaly detectors that systematically yield more

powerful anomaly detectors.

IV. LEAVE-ONE-OUT-, BOOTSTRAP- AND

CROSS-CONFORMAL ANOMALY DETECTION

Leave-one-out-, bootstrap- and cross-conformal anomaly

detection extends the standard split-conformal approach by

2Super-uniformity is required to validly apply Benjamini-Hochberg Proce-
dure [18] for FDR-control, see Section V.

resampling schemes regarding model training and calibration.

Without the need for a dedicated calibration set Dcalib, re-

spective approaches make more efficient use of the available

training data D that may be difficult or expensive to obtain in

certain contexts. Resulting anomaly detectors are less prone to

unstable estimates due to unlucky splits that may induce bias to

the calibration procedure. With that, they mitigate implications

posed by the dependence on a single subset Dcal.

In principle, the resampling-conformal anomaly detectors

divide D into k subsets D1,D2, ...,Dk (whether disjoint folds

or intersecting bootstrap samples) to learn a scoring function

sk on D \Dk by any given algorithm A suitable for one-class

classification.

Algorithm 1 formally defines the generalized resampling-
conformal anomaly detector that can be parameterized to yield

different variants of conformal anomaly detectors.

Algorithm 1 Resampling-Conformal Anomaly Detection

Input: Training data D (inliers), One-class algorithm A, Test

data Xn+1, Number of disjoint folds (or intersecting
bootstrap samples) K, Method variant (basic/+)

1: Resample D into K sets, D1,D2, ...,DK .

2: for k ∈ 1, 2, ...,K do
3: Fit a scoring function sk with A on D \ Dk.

4: Calculate and retain conformity scores sk(Dk).
5: if Method+ then
6: Retain fitted sk.

7: end if
8: end for
9: if not Method+ then

10: Fit a final scoring function ŝ on all D for inference.

11: end if
12: return Compute the p-value as the normalized rank

of ŝ(Xn+1), or an aggregation of {sk(Xn+1)}Kk=1

(for Method+), among all {sk(Dk)}Kk=1 as in 2.

Output: Conformal p-value û(Xn+1)

Given Proposition III.3 holds for the resampling procedure

during every iteration, the theoretical guarantees of the split-
conformal approach also hold for the resampling-conformal
approaches, as defined in the following. Meanwhile, the

resampling-conformal approaches yield larger sets of calibra-

tion scores and more powerful (lower) p-values.

Proposition IV.1 (cf. [13]). If the inliers in any drawn subset
Dk ⊆ D are exchangeable with themselves and with Xn+1,
then PH0

[û(Xn+1) ≤ α] ≤ α for all α ∈ (0, 1).

In the following, (i) JackknifeAD, and Jackknife+AD, (ii)
CVAD, and CV+AD, and (iii) Jackknife-after-BootstrapAD and

Jackknife+-after-BootstrapAD are formally defined, based on

their respective equivalents from the field of conformal pre-

diction.

A. JackknifeAD and Jackknife+AD

The term Jackknife [37]–[39] denotes a statistical procedure

encompassing general resampling techniques for estimating
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bias and variance of a (statistical) estimator [40]. In contrast,

the well-known leave-one-out validation can be viewed as a

specific implementation of Jackknife for model evaluation in

machine learning.

Following the Jackknife procedure, we define n leave-one-out-

sets X−i. For the standard JackknifeAD (JAD), described in

[23]–[25] for predictive tasks, we fit a scoring function

ŝ−i := A(X1, ..., Xi−1, Xi+1, ..., Xn) (4)

and compare each resulting calibration score ŝ−i(Xi) to the

test score ŝ(Xn+1) as obtained by a function ŝ, subsequentially

fitted on all available Xi ∈ D as

û(Xn+1) =
|{i ∈ D : ŝ−i(Xi) ≤ ŝ(Xn+1)}|+ 1

n+ 1
. (5)

For the Jackknife+AD (J+AD), we additionally retain all n fit-

ted scoring functions ŝ−i for inference on future Xn+1 and use

an aggregation function ϕ(·) (e.g. MEDIAN[·]) to form a scalar

score with ϕ({ŝ−1(Xn+1), ŝ−2(Xn+1), ..., ŝ−n(Xn+1)}) as

û(Xn+1) =
| {i ∈ D : ŝ−i(Xi) ≤ ϕ({ŝ−i(Xn+1)}) |+ 1

n+ 1
.

(6)

The J+AD is an extension to JAD primarily seeking to

stabilize obtained anomaly estimates by centering them around

the corresponding leave-one-out-estimates ŝ−i(Xn+1) instead

of a single ŝ(Xn+1). As long as the estimator is not highly

sensitive to certain observations (or subsets) of D the results

are similar [25]. Despite the small adjustment, J+AD possesses

a stronger theoretical foundation due to the congruent model

calibration and inference procedure.

Both methods become computationally prohibitive when

working with larger datasets, with J+AD also being compu-

tationally prohibitive during inference.

B. CVAD and CV+AD

CVAD and CV+AD can be seen as a generalizations of JAD

and J+AD by creating K disjoint folds S1, S2, ...SK , each of

size m = n/K, with
⋃K

i=1 Si = D fitting K scoring functions

ŝ−SK
:= ŝ(Xi : i ∈ {1, 2, ..., n} \SK) (7)

to calculate CVAD in analogy to JAD as

p(Xn+1) =
|{Sk ⊂ D : ŝ−Sk

(Sk) ≤ ŝ(Xn+1)}|+ 1

n+ 1
(8)

and CV+AD, respectively, in analogy to JAD as

p(Xn+1) =
|{Sk ⊂ D : ŝ−Sk

(Sk) ≤ ϕ(ŝ−i(Xn+1)}|+ 1

n+ 1
.

(9)

The advantage of CVAD and CV+AD is naturally the lower

computational costs, depending on the parameterization of K.

Theoretically, this comes at the cost of decreased statistical

power of resulting anomaly detectors, although the theoretical

foundation is practically equivalent to JAD and J+AD, cf. [25].

C. Jackknife- and Jackknife+-after-BootstrapAD

The originally conceived Jackknife+-after-Bootstrap

(J+aBAD) [26] is based on the idea of Jackknife-after-
bootstrap [41] and may analogously be extended by the

respective non-retaining variant. With that, JaBAD iteratively

samples k overlapping bootstrap samples B1, B2, ..., BK

and the complementing set of out-of-bag observations

−B1,−B2, ...,−BK to fit K scoring functions

ŝBK
:= ŝ(Xi : i ∈ {1, 2, ...n)} \ −BK) (10)

to calculate JaBAD as

û(Xn+1) =
|{Bk ⊂ D : ŝBk

(−Bk) ≤ ŝ(Xn+1)}|+ 1

n+ 1
(11)

and the function-retaining variant J+aBAD as

û(Xn+1) =

|{Bk ⊂ D : ŝBk
(−Bk) ≤ ϕ ({ŝBk

(Xn+1)}) }|+ 1

k × |−Bk|+ 1
. (12)

Both, JaBAD and J+aBAD have the advantage of theoretically

yielding arbitrarily large calibration sets, depending on their

parameterization. This may be a critical property for work

in low-data regimes as the calibration set size for the other

methods is limited to the size of the training data. Furthermore,

when the batch size of new data during inference is large,

measures for FDR control might get too conservative, limiting

the statistical power of conducted tests (see Section V).

V. MULTIPLE TESTING, PRDS, AND THE

BENJAMINI-HOCHBERG PROCEDURE

In order to control the FDR, the marginally valid p-values,

as simultaneously obtained for any CAD method during batch-
wise inference, need to be corrected for multiple testing [42].

In this work, we focus on the popular Benjamini-Hochberg
(BH) procedure [18] that allows FDR control for a set of

super-uniformly distributed and independent p-values (or test

statistics) at a given nominal level.
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The FDR is defined as the expected proportion of false
discoveries (Q) as defined by the proportion of total discov-
eries (R) to erroneous discoveries (V ), given R > 0 (else

E(Q) = 0) as

FDR = E(Q) = E

[(
V

R

)
| R > 0

]
, (13)

or put practically, in context of discussed anomaly detection
systems, as

FDR = E

(
efforts wasted on false alarms

total efforts

)
, (14)

both following the definitions as provided in [43].

The Benjamini-Hochberg procedure computes

adjusted p-values pBH
(i) for m tested hypotheses

{H01,H02, ...,H0i} = {H0i}mi=1 and corresponding

p-values {p1, p2, ..., pi} = {pi}mi=1 by sorting respective

p-values as p(1) ≤ p(2) ≤ ... ≤ p(m). Now let pk be the

largest value, so that pk ≤ kα/m. In case no respective k
exists, no actual discovery (outlier) is among the obtained

results. Otherwise, in case a respective k exists, reject the k
hypotheses H0i that belong to p(1), ..., p(k), defined as

pBH
(i) = Minimum

((
Minimum

j≥i
mp(j)/j

)
, 1

)
. (15)

With that, pBH
(i) ≤ α only if respective Hi was among the

discoveries prior to the adjustment.

In [12], inductive conformal p-values were shown to be

both, super-uniformly distributed (see (III)) and positive re-
gression dependent [on each one from] a subset (PRDS).

Definition V.1 (PRDS, e.g., from [21]). A vector of p-

values (p1, p2, ..., pn) is said to exhibit positive regression
dependence on [each one from] a subset I0 ⊂ {1, 2, ..., n}
if, for any i ∈ I0 and any non-decreasing set D ⊂ [0, 1]n, the

conditional probability PH0
(p ∈ D | pi = p) is non-decreasing

in p.

Although initially developed under the assumption of inde-
pendence among obtained p-values, BH was proven to be also

robust against this form of dependence among p-values.

Any set of p-values, as obtained for resampling-conformal

methods, can likewise be considered to be PRDS as the same

principle applies: “ [...] larger scores in the calibration set

make the p-values for all test points simultaneously smaller,

and vice-versa” [12].

Theorem V.2 (cf. [12]). Assume ŝ(Xi), ŝ−i(Xi) for all
Xi ∈ D, ŝ−Sk

(Sk) with
⋃K

i=1 Si = D or ŝBk
(−Bk)

with Bk ⊆ D to be continuously distributed. Con-
sider m test points Xn+1, Xn+2, ...Xn+m such that the
inliers are jointly independent of each other and the

data D. Then the marginal (resampling-)conformal p-values
(û(Xn+1), û(Xn+2), ..., û(Xn+m)) are PRDS on the set of
inliers.

This proves that the FDR control for resampling-conformal

p-values also offers marginal guarantees resulting in marginal
FDR control.

Theorem V.3 (e.g., from [21]). If the joint distribution of the
p-values (or test statistics) is PRDS on the subset of p-values
(or test statistics) corresponding to true H0, the Benjamini
Hochberg procedure controls the FDR at levels ≤ |H0|

|H| α.

As it was shown that resampling-conformal p-values come

with the same statistical properties as inductive-conformal

p-values, the adjustment procedures as described in [12]

— to obtain stronger (than average) guarantees in the form

of calibration-conditional conformal p-values — can equally

be applied.

VI. EVALUATION

We assess derived leave-one-out, bootstrap- and cross-

conformal methods in two separate experiments to assess their

effectiveness in providing reliable uncertainty quantification in

anomaly detection:

• Experiment I: Comparison between split-, leave-one-

out and cross-conformal (K = 10) methods on ten

benchmark datasets.

• Experiment II: Comparison between different calibration

set sizes obtained for both bootstrap-conformal methods

on ten benchmark datasets.

TABLE I
KEY FIGURES OF THE EVALUATION DATASETS AS PART OF ADBENCH [17].

Name n nfeature noutlier/n

L
o
w

D
at

a Wine 129 13 .078
WBC 223 9 .350
Ionosphere 351 32 .359
Breast 683 9 .350
Pima 768 8 .350

H
ig

h
D

at
a Musk 3 062 166 .032

Annthyroid 7 200 6 .074
Mammography 11 183 6 .023
Shuttle 49 097 9 .072
Fraud 284 807 29 .002

The conformal methods are applied to Isolation Forest, [14]

Local Outlier Factor (LOF) [15] and Principal Component
Analysis (PCA) [16]. The algorithms are used with their

default parameters3 as implemented by PyOD [44].

Ten benchmark datasets, as found in the benchmark collec-

tion ADBench [17], are used for evaluation. The datasets are

selected to encompass diverse datasets in terms of (i) size, (ii)
dimensionality, and (iii) class imbalance (see Table I).

Due to their computational costs, the leave-one-out-conformal

3For the Principal Component Analysis n components was set to 3. For all
algorithms contamination was set to the smallest possible float value due to
their application for one-class classification.
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TABLE II
PERFORMANCE OF SPLIT- AND RESAMPLING-CONFORMAL ANOMALY DETECTION METHODS USING ISOLATION FOREST. THE EVALUATION IS BASED ON

THE (MARGINAL) FALSE DISCOVERY RATE (α = 0.2) AND THE (MEAN) STATISTICAL POWER (x̄), EXTENDING BEYOND THE MARGINAL CASE AT THE

90TH QUANTILE (P90) OF THE EMPIRICAL DISTRIBUTION AND THE RESPECTIVE STANDARD DEVIATION (σ).

Isolation Forest – False Discovery Rate

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .032 .107 .088 .063 .218 .133 .037 .149 .091 .047 .136 .114 .040 .141 .081
WBC .119 .355 .153 .135 .329 .128 .138 .335 .129 .141 .342 .132 .146 .348 .133
Ionosphere .044 .138 .107 .065 .207 .117 .062 .204 .098 .073 .233 .111 .064 .193 .090
Breast .178 .328 .112 .180 .304 .096 .102 .228 .096 .184 .302 .090 .184 .304 .092
Pima .058 .172 .146 .059 .215 .110 .047 .112 .106 .078 .281 .124 .046 .155 .093

Musk .102 .228 .096 .099 .324 .141 .008 .011 .025 — — — — — —
Annthyroid .161 .262 .091 .159 .250 .081 .161 .232 .060 — — — — — —
Mammography .164 .261 .077 .153 .296 .099 .126 .208 .053 — — — — — —
Shuttle .175 .209 .025 .182 .251 .059 .182 .251 .059 — — — — — —
Fraud .178 .218 .030 .178 .221 .039 .173 .182 .007 — — — — — —

Isolation Forest – Statistical Power

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .007 .025 .019 .018 .071 .041 .012 .039 .034 .011 .035 .029 .010 .035 .025
WBC .174 .476 .186 .645 .901 .239 .616 .877 .235 .586 .882 .256 .614 .887 .239
Ionosphere .027 .112 .050 .111 .265 .100 .110 .244 .096 .127 .289 .108 .119 .232 .095
Breast .700 .850 .165 .797 .909 .085 .798 .903 .082 .800 .899 .080 .802 .913 .083
Pima .022 .072 .046 .031 .102 .042 .026 .068 .038 .040 .116 .052 .025 .064 .029

Musk .406 .841 .370 .253 .828 .343 .062 .099 .196 — — — — — —
Annthyroid .570 .829 .280 .584 .819 .270 .625 .799 .183 — — — — — —
Mammography .732 .850 .127 .787 .912 .110 .842 .891 .047 — — — — — —
Shuttle .825 .856 .025 .818 .892 .059 .835 .853 .013 — — — — — —
Fraud .821 .859 .030 .822 .870 .039 .827 .834 .007 — — — — — —

methods are only evaluated on datasets with less than 1000

observations (designated as low-data regime).

A. Setup

Following the evaluation setup as described in [12], we

randomly create J distinct datasets D1, ...,Dj with j ∈ J ,

comprising only normal observations. Each dataset Dj repre-

sents an independent data set used for training and calibration.

Each Dj comes with L test sets Dtest
j,1 , ...,Dtest

j,l with l ∈ L.

While Dj is fixed regarding its L test sets, they are again

drawn randomly and are not strictly disjointed.

For the evaluation, we are interested in the FDR conditional

on Dj defined as the expectation value

cFDR(Dj) := E
[
FDP

(Dtest;Dj

) | Dj

]
, (16)

with FDP (Dtest;Dj) as the False Discovery Proportion
(FDP) of inliers in the test set that was incorrectly reported as

outliers.

The results for any given j ∈ J will be evaluated by the FDR

̂cFDR(Dj) :=
1

L

L∑
l=1

FDP
(Dtest

j,l ;Dj

)
(17)

and the statistical power

̂cPower(Dj) :=
1

L

L∑
l=1

Power
(Dtest

j,l ;Dj

)
(18)

where Power(Dtest
j,l ;Dj) is defined as the proportion of total

outliers in Dtest
j,l correctly identified as outliers.

Our experiments demonstrate that the marginal FDR as
̂mFDR(Dj) =

1
J

∑J
j=1 ĉFDR(Dj) is controlled.

Respective evaluation metrics cover instances either incor-

rectly labeled as anomalies (a false alarm) or anomalies that

go unrecognized (a missed discovery).

B. Implementation Details

For training and calibration during Experiment
I, nInlier/2 observations were used with ntrain and

ncal = min{2000, ntrain/2}. For training and calibration J = 100
subsets were drawn, each with L = 100 corresponding non-

disjoint test sets Dtest
j,l of size ntest = min{1000, ntrain/3}

were sampled, each with 90% inliers and 10% outliers. The

FDR was controlled at the nominal level α = 0.2 by the

Benjamini-Hochberg procedure.

For Experiment II, JaBAD and J+aBAD were trained

with a (re-)sampling ratio of 0.95 and increasing sub-

sampling iterations to obtain different calibration set sizes

{100, 200, . . . , 1000}. The experiment protocol of Experiment
I was followed for every set size.
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TABLE III
PERFORMANCE OF SPLIT- AND RESAMPLING-CONFORMAL ANOMALY DETECTION METHODS USING LOCAL OUTLIER FACTOR. THE EVALUATION IS

BASED ON THE (MARGINAL) FALSE DISCOVERY RATE (α = 0.2) AND THE (MEAN) STATISTICAL POWER (x̄), EXTENDING BEYOND THE MARGINAL CASE

AT THE 90TH QUANTILE (P90) OF THE EMPIRICAL DISTRIBUTION AND THE RESPECTIVE STANDARD DEVIATION (σ).

Local Outlier Factor – False Discovery Rate

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .044 .144 .123 .165 .444 .177 .150 .415 .170 .153 .415 .164 .153 .415 .164
WBC .130 .316 .126 .126 .260 .117 .129 .263 .117 .139 .324 .122 .138 .324 .121
Ionosphere .077 .238 .127 .152 .350 .144 .122 .310 .137 .136 .328 .140 .136 .328 .140
Breast .159 .345 .127 .092 .276 .108 .100 .268 .108 .101 .268 .110 .102 .262 .110
Pima .032 .060 .104 .061 .205 .138 .065 .204 .143 .067 .205 .146 .067 .205 .146

Musk .176 .235 .046 .175 .222 .039 .157 .206 .038 — — — — — —
Annthyroid .168 .260 .082 .161 .240 .064 .162 .242 .065 — — — — — —
Mammography .142 .256 .088 .160 .230 .074 .165 .234 .075 — — — — — —
Shuttle .181 .210 .023 .187 .206 .013 .178 .196 .012 — — — — — —
Fraud* — — — — — — — — — — — — — — —

Local Outlier Factor – Statistical Power

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .012 .045 .033 .113 .263 .113 .107 .264 .113 .113 .263 .113 .113 .263 .113
WBC .222 .492 .187 .554 .829 .231 .628 .877 .204 .540 .813 .231 .541 .821 .235
Ionosphere .075 .210 .050 .426 .589 .119 .398 .535 .114 .419 .589 .122 .419 .589 .122
Breast .519 .790 .265 .168 .553 .216 .211 .614 .235 .197 .600 .227 .198 .600 .227
Pima .010 .030 .024 .016 .046 .034 .018 .050 .036 .018 .057 .036 .018 .057 .036

Musk .824 .882 .046 .825 .880 .039 .843 .889 .038 — — — — — —
Annthyroid .732 .819 .082 .807 .865 .048 .807 .867 .048 — — — — — —
Mammography .476 .772 .287 .509 .770 .247 .514 .772 .245 — — — — — —
Shuttle .819 .846 .023 .813 .829 .013 .822 .837 .012 — — — — — —
Fraud* — — — — — — — — — — — — — — —

*Fraud was excluded due to the dataset’s dimensionality (see Table I) and the O(N2d) time complexity of Local Outlier Factor.

VII. RESULTS AND DISCUSSION

The results in Table II, Table III and Table IV extend the

findings in [12], as also resampling-conformal p-values allow

for reliable control of the FDR for batch-wise inference in

a marginal sense (x̄ ≤ 0.2). The FDR for the split-conformal

method tends to be overall lower but has to be contextualized

by the observed statistical power as lower FDR and higher

statistical power typically represent a trade-off.

With regard to statistical power, the resampling-conformal

methods outperform the split-conformal approach with few

exceptions. This can mainly be attributed to the larger cali-

bration sets that the resampling-based methods yield, allowing

for lower p-values that maintain significance after the multiple

testing correction. As the size of the calibration set has a

decreasing marginal benefit, the advantage of resampling-

conformal methods becomes smaller in high-data regimes (for

calibration sets ≥ 2000). The converging performance is also

linked to the decreasing training set size for CV[+]AD with

K = 10, as each ensemble model is trained on less data than

the split-conformal model that caps its calibration set to 2000
instances for large datasets (see Subsection VI-B).

Looking at the bigger picture, several factors may be deci-

sive for the performance of the conformal methods. First, the

usefulness of obtained non-conformity scores (and resulting p-

values) is primarily determined by the learned scoring function

[45]. An unsuited algorithm A learning a deficient scoring

function ŝ will fail to produce powerful p-values. In this con-

text, the ensemble approach of resampling-conformal methods

might be counterproductive, as they potentially amplify the

systematic bias of models that underfit a given dataset (i.e.

dilute the little learning done). Second, the adherence or

violation of the exchangeability assumption (for out-of-sample

training data and for test data) may have an impact. For

(perfectly) exchangeable data, Jackknife[+]AD may perform

better as each ensemble model trains on more data, resulting

in lower bias and higher variance. For more heterogeneous

datasets, CV[+]AD may be more robust towards local patterns

— although this would need to be confirmed empirically with

respective experiment setups. Lastly, the impact of retaining

trained classifiers (for the variants Jackknife+AD and CV+AD)

seems to be inconsistent throughout the results, although the

differences for CV[+]AD are larger. The performance differ-

ences may be linked to the previously mentioned arguments

regarding exchangeability, although the discussion is nuanced

and would need further evaluation.

The key findings of Experiment I may be summarized as:

• Resampling-CAD offers reliable marginal FDR control

and yields more powerful anomaly classifiers, especially

within low-data regimes.

• The performance of CAD greatly depends on the ef-

fectiveness of the learned scoring function to separate

between inliers and outliers to produce powerful p-values.
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TABLE IV
PERFORMANCE OF SPLIT- AND RESAMPLING-CONFORMAL ANOMALY DETECTION METHODS USING PRINCIPAL COMPONENT ANALYSIS. THE

EVALUATION IS BASED ON THE (MARGINAL) FALSE DISCOVERY RATE (α = 0.2) AND THE (MEAN) STATISTICAL POWER (x̄), EXTENDING BEYOND THE

MARGINAL CASE AT THE 90TH QUANTILE (P90) OF THE EMPIRICAL DISTRIBUTION AND THE RESPECTIVE STANDARD DEVIATION (σ).

Principal Component Analysis – False Discovery Rate

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .035 .085 .103 .048 .147 .110 .042 .114 .098 .045 .111 .110 .044 .111 .108
WBC .101 .267 .120 .107 .276 .115 .095 .270 .112 .111 .284 .119 .109 .282 .117
Ionosphere .069 .264 .124 .096 .282 .115 .096 .258 .116 .097 .291 .121 .087 .288 .119
Breast .170 .337 .123 .148 .316 .111 .139 .316 .114 .150 .316 .111 .149 .316 .111
Pima .043 .148 .103 .059 .184 .125 .055 .159 .113 .060 .237 .120 .058 .201 .117

Musk .182 .249 .050 .181 .234 .044 .176 .229 .044 — — — — — —
Annthyroid .171 .268 .071 .165 .236 .055 .162 .234 .056 — — — — — —
Mammography .166 .245 .066 .174 .231 .042 .172 .231 .042 — — — — — —
Shuttle .174 .207 .026 .178 .194 .015 .172 .192 .015 — — — — — —
Fraud .180 .220 .028 .181 .189 .006 .180 .188 .006 — — — — — —

Principal Component Analysis – Statistical Power

Split-ConformalAD 10-CVAD 10-CV+AD JackknifeAD Jackknife+AD

x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ x̄ P90 σ

Wine .009 .022 .024 .018 .053 .038 .017 .051 .036 .017 .052 .035 .017 .02 .035
WBC .160 .422 .168 .377 .735 .277 .358 .725 .279 .381 .730 .256 .377 .727 .254
Ionosphere .068 .229 .094 .285 .403 .080 .282 .406 .082 .293 .411 .074 .286 .396 .074
Breast .602 .811 .248 .747 .898 .134 .742 .902 .139 .781 .896 .087 .780 .905 .087
Pima .012 .043 .027 .027 .075 .042 .025 .072 .040 .028 .098 .045 .027 .087 .045

Musk .818 .879 .050 .819 .880 .044 .824 .881 .044 — — — — — —
Annthyroid .807 .876 .056 .825 .879 .049 .825 .880 .047 — — — — — —
Mammography .686 .829 .195 .810 .850 .033 .812 .852 .033 — — — — — —
Shuttle .826 .855 .026 .822 .842 .015 .828 .848 .015 — — — — — —
Fraud .820 .855 .028 .819 .827 .006 .820 .826 .006 — — — — — —

• Calibration set sizes have a decreasing marginal benefit,

as the advantages of resampling- over split-conformal

methods become smaller within high-data regimes.

• Impacts of partial exchangeability (only within certain

subsets) and its implications for different method param-

eterizations are nuanced and need further investigation.

Experiment II (see Table V) tried to quantify the influence

of the calibration set size as obtained by JaBAD and J+aBAD,

applied with Principal Component Analysis (PCA).

Overall the results confirm the general findings of

Experiment I while yielding a noteworthy exception for

the Pima dataset. As PCA clearly shows poor performance

on the data, the marginal FDR is only maintained until

a calibration set size of ncalib = 500. From this, we can

conclude that the powerless p-values, produced by the subpar

PCA model, get so low that they remain significant after

the multiple testing correction — inflating the FDR beyond

the marginal case. This demonstrates the adverse effects of

scoring functions that fail to effectively separate between

inliers and outliers, resulting in p-values that do not accurately

reflect an instance’s degree of outlyingness.

VIII. CONCLUSION

Resampling-conformal methods represent a natural and

effective addition to conformal anomaly detection. Derived

methods are particularly helpful for anomaly detection tasks in

low-data regimes that require uncertainty quantification. The

resampling-based methods outperform the split-conformal ap-

proach, although the impact of their parameterization and the

characteristics of the underlying data (partial exchangability)

is nuanced and suggests new directions for future research.

By framing (batch-wise) inference for anomaly detection as

a multiple testing problem, the marginal FDR of resampling-

conformal anomaly detectors can reliably be controlled by

the Benjamini-Hochberg procedure, while typically exhibiting

higher statistical power and estimator stability. Due to the

inherent model agnosticism of conformal methods, they may

easily be integrated into existing anomaly detection systems,

offering high practicability. Constraints are mainly the in-

creased need for computational capacities, at least at the model

training stage, and the exchangability assumption. Further-

more, since FDR control is inherently tied to a multiple-testing

perspective, the general approach does not directly apply to an

online anomaly detection setting.

Beyond that, conformal anomaly detection methods integrate

elegantly with anomaly detection algorithms like Isolation
Forest that require a threshold value for detection.

Overall, the results provided in this work confirm the

effectiveness of the overarching principles of conformal in-

ference in a wider range of applications, beyond conformal

prediction. In summary, the presented work formally defined

the field of leave-one-out-, bootstrap- and cross-conformal (as

resampling-conformal) anomaly detection in analogy to the

existing field of conformal prediction and respective methods.
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TABLE V
THE (MARGINAL) FALSE DISCOVERY RATE (α = 0.2) AND THE (MEAN) STATISTICAL POWER (x̄) FOR JACKKNIFE[+]-AFTER-BOOTSTRAP WITH

DIFFERENT CALIBRATION SET SIZES (nCALIB ) USING PCA (RESAMPLING RATIO = 0.95). EACH RUN FOLLOWS THE PROTOCOL OF EXPERIMENT I.

(Marginal) False Discovery Rate

ncalib = 100 200 300 400 500 600 700 800 900 1,000

Wine JaB .185 .179 .173 .179 .179 .183 .185 .187 .186 .184
Wine J+aB .180 .177 .168 .172 .170 .173 .173 .178 .176 .175
WBC JaB .145 .161 .162 .167 .170 .172 .178 .176 .177 .181
WBC J+aB .139 .152 .153 .157 .161 .165 .170 .162 .168 .171

Ionosphere JaB .148 .167 .163 .172 .176 .179 .178 .177 .178 .179
Ionosphere J+aB .134 .156 .157 .167 .166 .170 .168 .167 .170 .172

Breast JaB .165 .175 .164 .173 .179 .176 .177 .173 .175 .176
Breast J+aB .161 .170 .159 .167 .174 .170 .171 .166 .169 .169
Pima JaB .021 .043 .088 .077 .239 .228 .230 .225 .238 .233
Pima J+aB .017 .041 .083 .073 .235 .225 .226 .221 .235 .230

Musk JaB .139 .161 .173 .175 .177 .177 .179 .178 .181 .183
Musk J+aB .137 .159 .171 .172 .174 .175 .176 .176 .178 .180

Annthyroid JaB .044 .081 .101 .120 .145 .143 .146 .146 .146 .154
Annthyroid J+aB .042 .080 .101 .119 .143 .141 .143 .144 .144 .152

Mammography JaB .122 .148 .153 .162 .174 .168 .168 .176 .170 .173
Mammography J+aB .121 .147 .151 .160 .173 .167 .167 .175 .169 .172

Shuttle JaB .157 .165 .169 .167 .172 .175 .175 .176 .177 .178
Shuttle J+aB .156 .163 .167 .165 .170 .172 .173 .174 .175 .176
Fraud JaB .117 .159 .168 .167 .173 .176 .178 .180 .180 .182
Fraud J+aB .116 .159 .168 .167 .173 .176 .177 .180 .180 .182

(Mean) Statistical Power

ncalib = 100 200 300 400 500 600 700 800 900 1,000

Wine JaB .092 .089 .082 .083 .085 .084 .079 .084 .080 .081
Wine J+aB .088 .084 .078 .077 .080 .079 .075 .078 .075 .075
WBC JaB .471 .680 .683 .694 .713 .715 .744 .744 .743 .746
WBC J+aB .461 .679 .674 .684 .702 .707 .738 .735 .736 .744

Ionosphere JaB .338 .608 .604 .616 .607 .617 .612 .618 .613 .616
Ionosphere J+aB .330 .610 .602 .615 .608 .618 .614 .619 .613 .615

Breast JaB .583 .756 .780 .800 .802 .806 .799 .809 .806 .804
Breast J+aB .581 .756 .780 .803 .805 .809 .803 .814 .810 .808
Pima JaB .006 .018 .042 .037 .071 .068 .070 .066 .076 .073
Pima J+aB .005 .017 .041 .037 .070 .067 .068 .064 .075 .071

Musk JaB .861 .839 .827 .825 .823 .823 .821 .822 .819 .817
Musk J+aB .863 .841 .829 .828 .826 .825 .824 .824 .822 .820

Annthyroid JaB .059 .213 .345 .453 .594 .602 .653 .680 .704 .759
Annthyroid J+aB .056 .211 .343 .453 .593 .602 .651 .677 .702 .758

Mammography JaB .259 .432 .505 .565 .611 .607 .616 .647 .659 .670
Mammography J+aB .258 .433 .505 .564 .612 .607 .615 .647 .660 .671

Shuttle JaB .820 .825 .831 .833 .828 .825 .825 .824 .823 .822
Shuttle J+aB .818 .827 .833 .835 .830 .828 .827 .826 .825 .824
Fraud JaB .525 .794 .830 .824 .824 .824 .822 .820 .820 .818
Fraud J+aB .524 .791 .830 .825 .824 .824 .823 .820 .820 .818

SOFTWARE AND DATA

Conducted experiments are accessible at github.com/
OliverHennhoefer/resampling-conformal-cad
for exact reproduction (Python). Applied conformal methods

are implemented in our publicly available package unquad
(Python) for uncertainty-quantified anomaly detection.
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